Rechercher
Fermer ce champ de recherche.

Transition écologique & rationalité

Fiches Transition écologique

Pression de la pollution anthropique chimique sur la planète

Une structure internationale pour informer et agir > Les pressions sur la planète, résultant des activités humaines, se sont considérablement amplifiées depuis le XIXe siècle, avec une accélération depuis les années 1940. Les conséquences sont impressionnantes dans leurs aspects positifs mais également négatifs. Positifs car, dans les pays les plus riches, l’espérance de vie des humains et leur espérance de vie en bonne santé n’ont cessé d’augmenter, et les systèmes de vie (habitats, transports, loisirs, travail…) se sont considérablement améliorés. La recherche et l’innovation ont généré des éléments extraordinairement importants (informatique, communications, transports, santé, énergie, production alimentaire…). Négatifs, car ces évolutions ne se sont pas accompagnées par une véritable prise en compte de leurs impacts planétaires et humains à long terme. En effet, la contrepartie de ces progrès se traduit notamment par une augmentation des inégalités, une dégradation sévère de l’état de l’environnement, le changement climatique et ses conséquences désastreuses, un bouleversement de l’occupation des sols, une démographie considérable, une diminution de la biodiversité…

Les personnels de la recherche face aux défis environnementaux

LA RESPONSABILITÉ DES SCIENTIFIQUES

 La société interpelle le scientifique et le politique sur les conditions de vie dans le domaine de la santé. À ces demandes se rajoutent des questions, très pressantes aujourd’hui, sur la qualité de l’environnement, avec des inquiétudes sur le changement climatique, la maîtrise d’une énergie décarbonée et le respect de la biodiversité. On attend du scientifique qu’il contribue à trouver des solutions, à proposer des initiatives et qu’il participe à l’élaboration d’une politique qui puisse satisfaire les objectifs de développement durable énoncés par l’ONU dans son agenda 2030.
Les chercheurs[2] contribuent largement à la définition de l’impact environnemental des activités humaines. Ainsi, pour le réchauffement climatique, la recherche scientifique a été mise à forte contribution pour aboutir aux conclusions du premier volet du dernier rapport du GIEC en août 2022[3]. Dans un souci de réflexivité et de responsabilité individuelle et collective, la communauté scientifique elle-même est appelée à repenser en profondeur d’une part ses pratiques, d’autre part ses finalités et ses valeurs, pour les mettre en cohérence avec l’ensemble des défis environnementaux auxquels la planète est aujourd’hui confrontée…

Climato-scepticisme et variations de la température de la Terre dans le passé

> DOCUMENT <

Par ignorance ou par mauvaise foi, les « climato-sceptiques » rejettent l’urgence d’une transition écologique. Ils sont encore nombreux, notamment aux États-Unis, et parfois très influents par les pressions qu’ils exercent sur des responsables politiques. Parmi eux, il faut distinguer (i) ceux qui nient que le réchauffement actuel soit sans précédent, (ii) ceux qui admettent que le réchauffement actuel n’a pas d’équivalent dans le passé mais qui nient son origine anthropique, et (iii) ceux qui admettent l’origine anthropique du réchauffement actuel mais nient la gravité de ce dernier.
Plutôt que d’une analyse scientifique, certaines de ces prises de position résultent d’un a priori idéologique ou d’intérêts personnels (c’est le cas le plus fréquent) – mais on se doit d’y répondre …

Débat sur la géo-ingénierie

> DOCUMENT <

Deux grandes familles de projets de géo-ingénierie : les émissions négatives de CO2 et l’amoindrissement de l’effet de serre.
Les accords de Paris ont pour objectif de limiter l’augmentation de
température moyenne de l’atmosphère due au réchauffement climatique sous le seuil de 2°C de plus que sa valeur préindustrielle (moyenne entre 1850 et 1900). Depuis 2018, le rapport spécial du GIEC commandé par les
« petits pays » a abaissé ce seuil à 1,5°C, démontrant qu’un réchauffement de 2°C mettrait particulièrement en danger les zones intertropicales et polaires. Dans les deux cas, mais encore plus dans le second puisqu’il s’agit d’une réduction plus drastique, remplir les objectifs fixés impose des « émissions négatives » c’est-à-dire de piéger (ou d’éliminer) du CO2 de l’atmosphère …

La question de l’eau dans le monde : faut-il s’angoisser ?

> DOCUMENT <

Il y a deux fois plus d’eau superficielle et souterraine que de terres émergées sur la planète qui porte donc un nom usurpé. Une quantité infime est disponible pour les usages dont l’accroissement est encore plus rapide que celui de la démographie. Le stress hydrique (quotient entre des ressources économiquement disponibles et le nombre d’habitants) est facteur d’angoisse …

Les terres rares et la transition écologique

> DOCUMENT <

Comment s’engager dans la transition écologique ? Le débat est ouvert et, malheureusement, au vu de la complexité du sujet, les arguments avancés manquent souvent de rigueur. Le problème sera abordé sous l’angle des terres rares, qui semblent indispensables à la réussite de la transition écologique. Certains affirment que le développement des énergies renouvelables sera empêché à cause de la pénurie inéluctable des terres rares. D’autres affirment que les progrès technologiques nous permettront de ne plus faire appel à celles-ci. Qu’en est-il vraiment ?…

L’aviation civile confrontée à la transition énergétique

> DOCUMENT <

• Le trafic aérien tient une place de plus en plus grande dans l’économie de nombreux pays. Il sera multiplié par un facteur compris entre 2,7 à 4,3 d’ici 2050, en supposant que les moteurs de cette croissance (exportations, tourisme…) seront peu affectés par les critiques que les écologistes adressent à ce trafic.
• Le carburant utilisé par l’aviation est exclusivement du kérosène d’origine fossile. Sa combustion produit du gaz carbonique (près de 3% des émissions mondiales), des gaz polluants (composés de soufre et d’azote), des particules fines et des suies.
• Vu la croissance attendue, ce trafic deviendra une source majeure de pollution de l’atmosphère en quelques décennies.
• Les mesures prises par l’Organisation de l’aviation civile internationale pour éviter cette situation ne sont pas à la mesure du problème posé car elles reposent essentiellement sur l’exploitation des marchés du carbone qui, en pratique, se sont avérés peu efficaces pour infléchir les émissions mondiales des gaz à effet de serre.
• Deux substituts du kérosène sont possibles. D’une part, le bio-kérosène fabriqué à partir de la biomasse. Des carburants de ce type ont été certifiés et testés, mais dans le cas des bio-kérosènes de 2ème ou 3ème génération – ceux qui ne sont pas en concurrence directe avec les filières agro-alimentaires – la rentabilité de leur industrialisation n’est pas établie. • • Un autre substitut peut être obtenu par synthèse chimique à partir de CO2, mais le développement (avant industrialisation) de cette filière de kérosène devrait prendre de l’ordre d’une décennie. Dans les deux cas, des infrastructures considérables seront nécessaires.
• Le recours à l’énergie électrique pour le trafic aérien n’aura guère d’impact pour au moins deux décennies.
• Les industries de l’aéronautique ne sont pas prêtes à assurer la transition écologique bien que celle-ci devienne plus urgente d’année en année…

L’hydrogène : un matériau d’avenir pour stocker et transporter de l’énergie ?

> DOCUMENT <

• L’intérêt de l’hydrogène (H2) dans le domaine de l’énergie tient d’abord au fait que 1 kg d’hydrogène permet de stocker autant d’énergie que ~ 4 litres d’essence (ou 3kg). Il réagit facilement avec le dioxygène pour donner de l’énergie thermique (combustion) ou électrique (pile à combustible).
• Il peut être utilisé pour stocker ou transporter de l’énergie et, dans certaines conditions, il concurrencera l’électricité. Mais 1 kg de H2 gazeux occupe un volume environ 2 800 fois plus grand que 4 l d’essence dans les conditions ordinaires de pression et de température. Pratiquement, qu’il s’agisse de stockage ou de transport, le gaz est souvent comprimé dans des bouteilles en acier à une pression pouvant atteindre 700 fois la pression atmosphérique (à cette pression, en prenant en compte la masse du réservoir, la densité d’énergie par kg est réduite d’un facteur ~15). On développe aussi des procédés de stockage de H2 dans des matériaux solides, avec des densités d’énergie comparables à celle assurée par une compression à 700 bars.
• H2 peut s’enflammer avec l’air et/ou exploser en cas de fuite. Comme c’est le cas pour de nombreux produits inflammables, son utilisation demande donc des précautions particulières.
• Aujourd’hui, plus de 90% de H2 est obtenu à partir d’hydrocarbures, mais il peut aussi être produit par électrolyse de l’eau, c’est-à-dire à partir d’électricité et d’eau, avec un rendement énergétique qui peut atteindre, voire dépasser 80%. La production par électrolyse ne génère aucune pollution.
• On peut aussi produire H2 par des procédés biologiques, à partir de la biomasse ou de certains déchets. Cette production est concurrencée par celle de méthane.
• La façon la plus prometteuse d’utiliser l’énergie chimique de H2 est de mettre en œuvre une pile à combustible. De l’énergie électrique est alors directement obtenue de H2 et O2 avec un rendement de 50% à 60% aujourd’hui (plus de 90% bientôt) et un moteur peut convertir cette énergie électrique en énergie mécanique avec un rendement proche de 1. Cet usage de H2 produit de l’eau et n’est accompagné d’aucune pollution.
• Il existe aujourd’hui des voitures et des autobus électriques utilisant le H2, bientôt des trains et même des « vélos ». Un kg de H2 permet à une voiture « ordinaire » de parcourir une soixantaine de km. Mais ce qui manque encore, c’est un réseau dense de distribution de ce gaz.
• H2 est susceptible d’être très largement utilisé pour stocker et transporter de l’énergie. En particulier, il pourrait être fait largement appel à ce gaz pour le stockage de l’électricité des sources intermittentes dans les périodes de surproduction…

L’électricité dans la transition énergétique

> DOCUMENT <

L’électricité tient une place à part dans le mix énergétique : ce n’est pas une énergie directement disponible dans la nature. Sa production est le résultat d’un processus industriel où une énergie primaire (pétrole ou charbon, vent ou énergie solaire, énergie potentielle d’une chute d’eau) est convertie en électricité.

La production mondiale d’énergie dite primaire représente, en 2017, 14 milliards de tonnes d’équivalent pétrole (TEP). Les énergies fossiles classiques atteignent 81 % du total et l’électricité « directe » (nucléaire, hydraulique, EnR et un peu de biomasse) 10 % du total.